On non-Gaussian SST variability in the Gulf Stream and other strong currents

نویسندگان

  • Philip Sura
  • Pierre Lermusiaux
  • P. Sura
چکیده

This paper examines the physics of observed non-Gaussian sea surface temperature (SST) anomaly variability in the Gulf Stream system in a recently developed stochastic framework. It is first shown from a new high-resolution observational data set that the Gulf Stream system is very clearly visible as a band of negative skewness all the way from Florida, over Cape Hatteras, to the central North Atlantic. To get an idea about the detailed non-Gaussian variability along the Gulf Stream, probability density functions are calculated at several locations. One important observational result of this study is that the non-Gaussian tails of SST variability in the Gulf Stream system follow a power-law distribution. The study then shows that the observed non-Gaussianity is consistent with stochastic advection of SST anomalies in an idealized zonal current. In addition, stochastic advection is compatible with the observed northward eddy heat flux in the Gulf Stream, providing a new dynamical view at the heat balance in strong currents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Air-sea interactions during the passage of a winter storm over the Gulf Stream: A three-dimensional coupled atmosphere-ocean model study

[1] A three-dimensional, regional coupled atmosphere-ocean model with full physics is developed to study air-sea interactions during winter storms off the U. S. east coast. Because of the scarcity of open ocean observations, models such as this offer valuable opportunities to investigate how oceanic forcing drives atmospheric circulation and vice versa. The study presented here considers condit...

متن کامل

Precipitation Response to the Gulf Stream in an Atmospheric GCM*

The precipitation response to sea surface temperature (SST) gradients associated with the Gulf Stream is investigated using an atmospheric general circulation model. Forced by observed SST, the model simulates a narrow band of precipitation, surface convergence, and evaporation that closely follows the Gulf Stream, much like satellite observations. Such a Gulf Stream rainband disappears in the ...

متن کامل

مطالعه دمای سطح آب و انتقال اکمن در ناحیه خلیج فارس

  The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905). Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport o...

متن کامل

Investigation of Sea Surface Temperature (SST) and its spatial changes in Gulf of Oman for the period of 2003 to 2015

Considering the great application of Sea Surface Temperature (SST) in climatic and oceanic investigations, this research deals with the investigation of spatial autocorrelation pattern of SST data obtained from AVHRR sensor for Gulf of Oman from 2003 to 2015 (13 years). To achieve this aim, two important spatial statistics, i.e. global Moran and Anselin local Moran’s I were employed within mont...

متن کامل

The Relation between Decadal Variability of Subtropical Mode Water and the North Atlantic Oscillation*

The Bermuda station ‘‘S’’ time series has been used to define the variability of subtropical mode water (STMW) from 1954 to 1995. This record, which shows decadal variability at a nominal period of about 12–14 yr, has been used as a baseline for seeking correlation with large-scale atmospheric forcing and with decadal north–south excursions of the Gulf Stream position defined by the subsurface ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010